Concept Maps as Teaching, Learning, and Assessment Tools

A Serve-Learn-Sustain Assessment Workshop

Presented at the Georgia Institute of Technology Friday January 20, 2017

By:

Mary Katherine Watson, PhD

Assistant Professor Civil and Environmental Engineering The Citadel

Workshop Overview

Introduction: "Serve-Learn-Sustain" Context

Serve-Learn-Sustain (SLS) Learning Outcomes:

- <u>*Identify*</u> relationships among ecological, social, and economic systems.
- <u>Describe</u> how sustainability and community engagement relate to their civic lives.
- <u>Describe</u> how sustainability relates to their professional practice.
- <u>Describe</u> the social and cultural impact of their professional practice.

Many outcomes target improving *conceptual knowledge*.

Introduction: What is Conceptual Knowledge?

Introduction: Why is conceptual knowledge important?

Introduction: Need for Assessments

Given the role of conceptual knowledge in professional competence, there is a need for appropriate:

Introduction: Concept Maps (Cmaps)

Cmaps are graphical tools for organizing and presenting knowledge.

Introduction: Construction of a Concept Map

- Include concepts related to a central topic in boxes.
- Connecting lines with phrases show concept relationships.
- Cmap Components
 - Propositions
 - Hierarchies
 - Cross-links

Introduction: Examples of Concept Maps in Higher Education

Introduction: "Serve-Learn-Sustain" Context

Serve-Learn-Sustain (SLS) Learning Outcomes:

- <u>*Identify*</u> relationships among ecological, social, and economic systems.
- <u>Describe</u> how sustainability and community engagement relate to their civic lives.
- <u>Describe</u> how sustainability relates to their professional practice.
- <u>Describe</u> the social and cultural impact of their professional practice.

Concept maps can be used to promote *learning and assessment* of SLS outcomes.

Activity #1: Cmap Applications for "Serve-Learn-Sustain"

- Make a list of SLS topics that could be assessed using cmaps.
- Identify the SLS outcome associated with each topic.

Workshop Overview

Concept Map Activities: Key Components

Three components of a concept mapping activity/assessment:

Concept Map Activities: Task

Several levels of task directedness:

Concept Map Activities: Format

By Hand:

Easy to administer No program to learn Difficult to organize cmap Can be harder to score

CmapTools:

Easy to organize cmap Can be easier to score Program easy to learn Requires computers to administer

Concept Map Activities: Scoring

Scoring methods needed to:

Scoring is the major bottleneck in use of concept maps.

Concept Map Activities: Activity #2

- Choose an SLS topic and create a concept map using the poster board.
- You can work individually or in groups.
- Post your concept map at the front when you are done!

Concept Map Activities: Ready to Try in Your Classroom?

Sample resources available in workshop folders.

Workshop Transition

Workshop Overview

Concept Map Activities: Key Components

Three components of a concept mapping activity/assessment:

Concept Map Scoring: Overview of Methods

Concept Map Scoring: Overview of Methods

Concept Map Scoring: Traditional Scoring Method

- Number of concepts (NC) represents knowledge breadth sub-score.
- Highest level of hierarchy (HH) represents knowledge depth.
- Number of cross-links (NCL) represents knowledge connectedness.

Concept Map Scoring: Traditional Scoring Method

Total = 68

Scoring Method:

- Count unique concepts
- Number hierarchies
- Assign each concept to a
- Determine highest hierarchy

Determine number of cross-

Concept Map Assessments: Activity #3

- Count unique concepts
- Number hierarchies
- Assign each concept to a hierarchy
- Determine highest hierarchy
- Determine number of cross-links

Concept Map Scoring: *Traditional Scoring Method*

The traditional method seems easy...

But what about this one???

Concept Map Scoring: Traditional Scoring Method

Or this one???

A concept map scoring program is available!

Concept Map Scoring: Overview of Methods

A study conducted in CEE at Georgia Tech:

A study conducted in an SLS course:

You can choose any categories that are of relevance to your concept maps.

Word clouds can provide quick, easy qualitative analysis.

Try Wordle!

Concept Map Scoring: Overview of Methods

Concept Map Scoring: Interlinks and Complexity

STEP 1: Categorize each concept in the concept map.

STEP 2: Count "interlinks" between concepts from different categories.

Sustainability

requires balance of three dimensions

Economio

Ecological Technical Social Temporal Consider the second s

STEP 3: Calculate complexity for each concept map.

 $CO = NC * \frac{NIL}{N_{CAT}}$

CO = Complexity NC = No. Concepts NIL = No. Interlinks NCAT = No. Categories

Captures *content and structure* of concept maps.

A study conducted in an SLS course:

Concept Map Scoring: Overview of Methods

Concept Map Scoring: Analytic Rubric

Besterfield-Sarce et al. 2004 Rubric

	1	2	3	
Comprehensiveness – covering completely/broadly	The map lacks subject definition; the knowledge is very simple and/or limited. Limited breadth of concepts (i.e. minimal coverage of coursework, little or no mention of employment, and/or lifelong learning). The map barely covers some of the qualities of the subject area.	The map has adequate subject definition but knowledge is limited in some areas (i.e., much of the coursework is mentioned but one or two of the main aspects are missing). Map suggests a somewhat narrow understanding of the subject matter.	The map completely defines the subject area. The content lacks no more than one extension area (i.e., most of the relevant extension areas including lifelong learning, employment, people, etc. are mentioned).	Considers content
Organization – to arrange by systematic planning and united effort	The map is arranged with concepts only linearly connected. There are few (or no) connections within/between the branches. Concepts are not well integrated.	The map has adequate organization with some within/between branch connections. Some, but not complete, integration of branches is apparent. A few feedback loops may exist.	The map is well organized with concept integration and the use of feedback loops. Sophisticated branch structure and connectivity.	Considers structure
Correctness - conforming to or agreeing with fact, logic, or known truth	The map is naïve and contains misconceptions about the subject area; inappropriate words or terms are used. The map documents an inaccurate understanding of certain subject matter	The map has few subject matter inaccuracies; most links are correct. There may be a few spelling and grammatical errors.	The map integrates concepts properly and reflects an accurate understanding of subject matter meaning little or no misconceptions, spelling/grammatical errors	Adaptation for sustainability- focused cmaps is available in workshop folder.

Workshop Overview

Concept Map Scoring: *Practical Considerations*

Student Grades vs. Assessment Scores

Assessment scores may not be appropriate as grades.

There is often no right or wrong answer.

Scoring methods may not provide timely, meaningful feedback.

Closing & Summary: "Serve-Learn-Sustain" Context

Serve-Learn-Sustain (SLS) Learning Outcomes:

- <u>*Identify*</u> relationships among ecological, social, and economic systems.
- <u>Describe</u> how sustainability and community engagement relate to their civic lives.
- <u>Describe</u> how sustainability relates to their professional practice.
- <u>Describe</u> the social and cultural impact of their professional practice.

Concept maps can be used to promote *learning and assessment* of SLS outcomes.

Workshop Overview

- 1. Montfort, D., S. Brown, and D. Pollock, *An Investigation of Students' Conceptual Understanding in Related Sophomore to Graduate-Level Engineering and Mechanics Courses.* Journal of Engineering Education, 2009. **98**(2): p. 111-129.
- 2. Baroody, A.J., Y. Feil, and A.R. Johnson, *An alternative reconceptualization of procedural and conceptual knowledge*. Journal for Research in Mathematics Education, 2007. **38**: p. 115-131.
- 3. Rittle-Johnson, B., Promoting Transfer: Effects of Self-Explanation and Direct Instruction. Child Development, 2006. 77(1): p. 1-15.
- 4. Star, J.R., *Reconceptualizing procedural knowledge*. Journal for Research in Mathematics Education, 2005. **36**: p. 404-411.
- 5. Novak, J. D. and A.J. Cañas, *The theory underlying concept maps and how to construct and use them*, 2008. Available at: http://eprint.ihmc.us/5/2/TheoryUnderlyingConceptMaps.pdf>.
- 6. Besterfield-Sacre, M., et al., Scoring Concept Maps: An Integrated Rubric for Assessing Engineering Education. Journal of Engineering Education, 2004. **93**(2): p. 105-115.
- 7. Turns, J., C. Atman, and R. Adams, *Concept maps for engineering education: A cognitively motivated tool supporting varied assessment functions.* IEEE Transactions on Education, 2000. **43**(2).
- 8. Watson, M.K., et al., Assessing Conceptual Knowledge Using Three Concept Map Scoring Methods. Journal of Engineering Education, 2016. **105**(1): p. 118-146.
- 9. Tulving, E., *Episodic and Semantic Memory*, in *Organization of Memory*, E. Tulving and W. Donaldson, Editors. 1972, Academic Press: Oxford, England
- 10. Ruiz-Primo, A., On the use of concept maps as an assessment tool in science: What we have learned so far. Revista Electrónica de Investigación Educativa, 2000. **2**(1): p. 29-53.
- 11. Watson, M.K., E. Barrella, and J. Pelkey, *Assessment of conceptual knowledge using a component-based concept map scoring program*. Computers & Education, In submission.
- 12. Ruiz-Primo, M.A. and R.J. Shavelson, *Concept-Map Based Assessment: On Possible Sources of Sampling Variability*. 1997, Center for Research on Evaluation, Standards and Student Testing: Los Angeles, CA.
- 13. Barrella, E.M. and M.K. Watson, *Comparing the outcomes of horizontal and vertical integration of sustainability content into engineering curricula using concept maps* in *New Developments in Engineering Education for Sustainable Development*, W.L. Filho and S. Nesbit, Editors. 2016, Springer International Publishing: Cham, Switzerland.
- 14. Barrella, E., Henriques, J. Gipson, K. (2016). Using concept maps as a tool for assessment and continuous improvement of a first year course. Proceedings of the 2016 ASEE Annual Conference & Exposition, Atlanta, GA, June 26-29, 2016.