Food-Energy-Water Nexus

Big Idea Writeup

Food-Energy-Water Nexus

FEW systems can be define very broadly, according to the National Science Foundation "incorporating physical processes (such as new technologies for more efficient resource utilization), natural processes (such as biogeochemical and hydrologic cycles), biological processes (such as agroecosystem structure and productivity), social/behavioral processes (such as decision making and governance), and cyber elements."

Blog Article

Reflections on the Fall 2016 SLS Food, Energy, Water Systems (FEWS) Fellows Program

Promoting Interdisciplinarity, Openness, and Engagement by Carl DiSalvo

On the Difficult, Necessary Work of Leaving the Silo: Avoiding Unintended Consequences by Joe Brown (see below)

Course

The Rhetorics and Poetics of Dirt

This course asks students to examine what we talk about when we talk about “dirt,” and how do the things we communicate about dirt change its presence in our lives. The major assignments facilitate learning goals through four units: dirt vs. soil, earthworks, dirt stories, and trendy dirt. The primary texts in this course will largely deal with a North American perspective on dirt. We will engage with American film (ex: Grapes of Wrath, Waterworld, Noma, Interstellar, The Martian, the Mad Max megaverse), and contemporary American literature.

Numerical Methods in Chemical Engineering

Many engineering problems require the use of advanced numerical methods for finding solutions to systems of linear, nonlinear, and differential equations, optimizing functions, and analyzing data. The general objectives of this course are to develop skills in properly defining and setting up chemical engineering problems and learning numerical methods that can be used to solve these problems. For this reason, this course provides a foundation of techniques that can be used to solve practical and complex engineering problems.

English Service Learning for Sustainable Futures

This English language course will explore and create solutions toward a Sustainable Future for cities here and around the world. Our local focus will be Atlanta, where we hear speakers, read about, and visit examples of sustainable solutions in food and energy. Then, we will work in teams to teach and demonstrate an example of sustainability to the ones most likely to carry it out: kids. We will incorporate their perspectives in our activities. Throughout, students will reflect in writing and speaking and receive support to improve academic and professional English fluency. 

Electrochemical Energy Storage and Conversion

Energy sustainability determines the suitability of the communities and the whole global society. The course will teach students the concepts in electrochemical energy storage and conversion and the working mechanisms and applications of a number of popular energy storage devices such as rechargeable batteries, supercapacitors and fuel cells. The application of such energy storage technologies can promote the use of clean energy sources and improve energy efficiency.

Introduction to Environmental Science

Understanding our planet’s environment requires understanding how the whole Earth functions as an interconnected system. This course investigates the four components of the Earth system in detail: the atmosphere, the oceans, the solid Earth, and the biosphere to understand how these processes interact, and then how we, as humans, impact our planet.